AI模型评测

HELM

斯坦福大学推出的大模型评测体系

标签:

HELM是什么

HELM全称Holistic Evaluation of Language Models(语言模型整体评估)是斯坦福大学推出的大模型评测体系,评测方法主要包括场景、适配、指标三大模块,每次评测的运行都需要指定一个场景,一个适配模型的提示,以及一个或多个指标。它评测主要覆盖的是英语,通过准确率、不确定性/校准、鲁棒性、公平性、偏差、毒性、推断效率综合评测模型表现,适用问答、信息检索、文本分类等任务,为语言模型提供更全面、系统的评估方法,帮助研究人员和开发者更好地理解和优化模型性能。

HELM的主要功能

  • 全面的评估能力:HELM支持多种语言模型任务(如问答、文本分类、信息检索、文本生成、摘要等),提供多种评估指标(包括准确率、鲁棒性、公平性、偏差、毒性、推断效率等),能够从多个维度全面评估语言模型的性能。
  • 可复现性与透明性:HELM基于标准化的评估流程和配置文件,确保不同用户在相同条件下能够获得一致的评估结果,用户能查看和修改评估代码,保证评估过程的透明性和可定制性。
  • 多模态支持:HELM不仅支持纯文本任务,还支持多模态任务(例如图像描述生成、视觉问答等),评估多模态模型的综合性能。
  • 自定义扩展:用户根据自己的需求,自定义评估任务、适配策略和指标,HELM提供灵活的扩展机制,满足特定的研究或应用需求。

如何使用HELM

  • 安装HELM
    • 基于pip安装
pip install helm
    • 从源代码安装(如果需要最新功能):
git clone https://github.com/stanford-crfm/helm.git
cd helm
pip install -e .
  • 配置评估任务:创建YAML配置文件,定义要评估的任务场景、适配策略和评估指标。
  • 运行评估
helm run --config <path_to_config_file> --model <model_name>
    • :配置文件的路径。
    • :要评估的语言模型名称(例如gpt-3bert-base-uncased等)。
  • 分析评估结果:查看HELM生成的评估报告,分析模型在不同指标上的表现。
  • 自定义任务和指标(可选):编写Python代码,自定义评估任务(继承Scenario类)或评估指标(继承Metric类)。

HELM的应用场景

  • 语言模型性能评估:全面评估语言模型在多种任务(如问答、文本分类、信息检索、文本生成等)上的性能,帮助研究人员和开发者了解模型的优势和不足。
  • 模型优化与改进:通过详细的评估报告,研究人员发现模型在特定任务或指标上的弱点,针对性地优化模型架构或训练策略。
  • 多模态模型评估:支持多模态任务(如图像描述生成、视觉问答等),能评估多模态模型在处理文本和图像结合的任务时的表现。
  • 公平性与偏差检测:评估语言模型是否存在性别、种族、文化等方面的偏差,帮助开发者确保模型的公平性和中立性。
  • 毒性检测:检测语言模型生成的内容是否包含有害或不适当的内容,确保模型输出的健康性和安全性。

相关导航

暂无评论

暂无评论...